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Outlines

Motivation: kinetic approximations of conservation laws allow to design
explicit CFL-less high order schemes. But they involve hidden variables.
How to apply boundary conditions on these variables ?

Kinetic relaxation and over-relaxation

Equivalent PDE and boundary conditions

Kinetic relaxation in higher dimensions
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Kinetic relaxation and over-relaxation
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Relaxation of hyperbolic systems

I Hyperbolic system with unknown u(x , t) ∈ Rm:

∂tu+ ∂x f(u) = 0.

LHS: non-linear equations /; RHS: zero ,.

I Approximation by Jin-Xin1 relaxation (λ > 0, ε → 0+)

∂tu+ ∂xz = 0, (1)

∂tz+ λ
2
∂xu = µ, (2)

where
µ =

1
ε

(f(u)−z).

LHS: linear system with constant coefficients ,; RHS: non-linear
coupling /.

1Jin and Xin, “The relaxation schemes for systems of conservation laws in
arbitrary space dimensions”.
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Over-relaxation

Let’s do splitting. For a rigorous formulation, introduce the Dirac comb:

Ψ(t) = ∑
i∈Z

δ (t− i∆t).

Jin-Xin relaxation is replaced in practice by

∂tu+ ∂xz = 0, (3)

∂tz+ λ
2
∂xu = µ, (4)

with
µ(x , t) = θΨ(t)

(
f(u(x , t))−z(x , t−)

)
, θ ∈ [1,2].

In other words, at times t = i∆t, z has jumps in time and:

z(x , t+) = θ f(u(x , t)) + (1−θ)z(x , t−).

If the relaxation parameter θ = 1, we recover the first order splitting.
The over-relaxation corresponds to θ = 2.
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explicit, CFL-less Kinetic interpretation
We can diagonalize the linear hyperbolic operator. For this, consider the
change of variables

k+ =
u
2

+
z
2λ

, k− =
u
2
− z

2λ
.

u = k+ +k−, z = λk+−λk−.

Then
∂tk+ + λ∂xk+ = r+, ∂tk−−λ∂xk− = r−,

where
r±(x , t) = θΨ(t)

(
keq,±(u(x , t−))−k±(x , t−)

)
and the “Maxwellian” states keq,± are given by

keq,±(u) =
u
2
± f(u)

2λ
.

Most of the time, the kinetic variables k+ and k− satisfy free transport
equations at velocity ±λ , with relaxation to equilibrium at each time
step.
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Equivalent PDE and boundary conditions



8/18

Oscillations of the flux error

We consider the case θ = 2.

I Let us introduce the “flux error”

y := z− f(u).

I At time t = i∆t, we see that

y(x , t+) =−y(x , t−).

Therefore y oscillates around 0 at a frequency 1/∆t.

I For the analysis, it is better to consider the solution only at even (or
only at odd) times steps t = 2i∆t.
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Equivalent PDE analysis

We can prove the following result (more rigorous formulation exists2).
Theorem: if the solution of the over-relaxation scheme is considered at
even time steps, then, up to second order terms in ∆t, its equivalent
equation in (u,y) is the following hyperbolic system of conservation laws

∂tu+ ∂x f(u) = 0,
∂ty− f ′(u)∂xy = 0.

Remarks:

I u satisfies the expected conservative system at order O(∆t2).

I y satisfies a non-conservative equation.

I There is no assumption on the smallness of y at the initial time.

I The waves for u and y move in opposite directions.

2Drui et al., “An analysis of over-relaxation in a kinetic approximation of
systems of conservation laws”.
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Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



10/18

Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.



11/18

Application to boundary conditions

The analysis gives hints to build stable boundary conditions on z.

I Roughly speaking, at an inflow boundary for u, one should impose u
and not y, while at an outflow boundary for u one should impose y
and not u.

I This also means that one should impose exactly m boundary
conditions, where m is the dimension of u. This is compatible with
the characteristics of the kinetic system.

I We expect that y ' 0. However it is better to impose a Neumann
boundary condition ∂xy = 0 for not perturbing the time oscillations
of y.
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Numerical results

We consider a simple transport equation at constant velocity v > 0.

u = ρ, f(u) = ρv .

Smooth initial data. Three strategies of boundary conditions.
Typical plot for the three stategies.



13/18

Error rate
Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

Smooth initial data corresponding to a supersonic flow moving rightward.
We test the previous three strategies of boundary conditions.
Error rate for the three strategies
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Kinetic relaxation in higher dimensions
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Kinetic model in higher dimensions3,4

I Vectorial kinetic equation

∂tk+
D

∑
i=1

Vi
∂ik =

1
τ

(keq(k)−k). (5)

k(x, t) ∈ Rn, x ∈ RD .

I The matrices Vi , 1≤ i ≤ D are diagonal and constant.

I u = Pk where P is a constant m×n matrix, m < n.

I The equilibrium distribution keq(k) is such that Pk = Pkeq(k).

I When τ → 0, approximation of ∂tu+ ∑
D
i=1 ∂i f i (u) = 0, where the

flux is given by f i (u) = PVikeq(k).

3Bouchut, “Construction of BGK models with a family of kinetic entropies
for a given system of conservation laws”.

4Aregba-Driollet and Natalini, “Discrete kinetic schemes for
multidimensional systems of conservation laws”.
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CFL-less kinetic DG scheme

I On unstructured meshes, it is easy to solve the kinetic transport
equations with an implicit upwind Discontinuous Galerkin scheme.

I In practice, the scheme is explicit if the cells are visited in the good
order.
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I In this way we obtain explicit unconditionnaly stable schemes !
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CFL-less kinetic DG scheme

Further improvements

I High order in space and time with palindromic splitting5;

I Easy parallelization, with a task-based approach and StarPU
runtime system6;

I Applications to: compressible flows, MHD, two-phase flow, etc.7

5Hairer, Lubich, and Wanner, Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations.

6Badwaik et al., “Task-based parallelization of an implicit kinetic scheme”.
7Coulette et al., “High-order implicit palindromic Discontinuous Galerkin

method for kinetic-relaxation approximation”.
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Thanks for your attention !

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10.
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