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Outlines

Motivation: kinetic approximations of conservation laws allow to design
explicit CFL-less high order schemes. But they involve hidden variables.
How to apply boundary conditions on these variables 7

Kinetic relaxation and over-relaxation

Equivalent PDE and boundary conditions

Kinetic relaxation in higher dimensions



Kinetic relaxation and over-relaxation



Relaxation of hyperbolic systems

» Hyperbolic system with unknown u(x,t) € R™:
dru+ dxf(u) =0.

LHS: non-linear equations @; RHS: zero ©.

» Approximation by Jin-Xin! relaxation (2 >0, € — 0%)
Jru+dz=0,
drz+A%0u=up,

where
1

= (F(w)~2)

LHS: linear system with constant coefficients ©; RHS: non-linear

coupling ®.

1Jin and Xin, “The relaxation schemes for systems of conservation laws in

arbitrary space dimensions”.



Over-relaxation

Let's do splitting. For a rigorous formulation, introduce the Dirac comb:

W(t)=Y 6(t—iAr).
i€z
Jin-Xin relaxation is replaced in practice by
dru+0dyxz =0, (3)
drz+A%0u=p, (4)
with
p(x,t) = 0W(t) (F(u(x,t)) —2z(x,t7)), 6€[L,2].

In other words, at times t = jAt, z has jumps in time and:
z(x,t7) = 6f (u(x,t)) + (1 — 0)z(x,t").

If the relaxation parameter 8 = 1, we recover the first order splitting.
The over-relaxation corresponds to 6 = 2.



explicit, CFL-less Kinetic interpretation

We can diagonalize the linear hyperbolic operator. For this, consider the
change of variables

u z u z

+_ "4 = - __ =
k _2+27U k 2 217

u=kt+k™, z=21k"T -1k

Then
ockt + Aok =r", OkT—Adk =r,

where
rjt(x7 t) = 6V(t) (ke"’i(u(x, t7))— ki(x, t’))

and the “Maxwellian” states k9* are given by

u  f(u)

k9E(u) = = + =2,

(u) 27 21

Most of the time, the kinetic variables k™ and k™ satisfy free transport
equations at velocity A, with relaxation to equilibrium at each time

step.



Equivalent PDE and boundary conditions



Oscillations of the flux error

We consider the case 6 = 2.
» Let us introduce the “flux error”
y:=z—f(u).
> At time t = iAt, we see that
y(x,t7) = —y(x,t7).

Therefore y oscillates around 0 at a frequency 1/At.

> For the analysis, it is better to consider the solution only at even (or
only at odd) times steps t = 2/At.



Equivalent PDE analysis

We can prove the following result (more rigorous formulation exists?).
Theorem: if the solution of the over-relaxation scheme is considered at
even time steps, then, up to second order terms in At, its equivalent
equation in (u,y) is the following hyperbolic system of conservation laws

dru+ dxf(u) =0,
dry —f'(u)dxy = 0.
Remarks:
> u satisfies the expected conservative system at order O(At?).
> y satisfies a non-conservative equation.
» There is no assumption on the smallness of y at the initial time.

» The waves for u and y move in opposite directions.

2Drui et al., “An analysis of over-relaxation in a kinetic approximation of
systems of conservation laws".



Numerical results

» Isothermal Euler equations
u=(p,pu)’, f(u)=(pu,pu®+c?p).
» Smooth initial data with a bump. Supersonic flow moving rightward
(0 <A1 =u—c < Ay =u+c). Non-physical initial value of y # 0.

» Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

» We plot p and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.
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Application to boundary conditions

The analysis gives hints to build stable boundary conditions on z.

» Roughly speaking, at an inflow boundary for u, one should impose u
and not y, while at an outflow boundary for u one should impose y
and not u.

» This also means that one should impose exactly m boundary
conditions, where m is the dimension of u. This is compatible with
the characteristics of the kinetic system.

> We expect that y ~ 0. However it is better to impose a Neumann
boundary condition dyy = 0 for not perturbing the time oscillations
of y.



Numerical results

We consider a simple transport equation at constant velocity v > 0.

u=p, f(u)=pv.

Smooth initial data. Three strategies of boundary conditions.
Typical plot for the three stategies.
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Error rate
Isothermal Euler equations

u=(p,pu)", f(u)=(pu,pu®+c?p).

Smooth initial data corresponding to a supersonic flow moving rightward.
We test the previous three strategies of boundary conditions.
Error rate for the three strategies
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Kinetic relaxation in higher dimensions



Kinetic model in higher dimensions3*

» Vectorial kinetic equation
8tk+§v’9,-k: E(keq(k)—k). (5)
i-1 T
k(x,t) €R", x € RD.
The matrices Vi, 1 < i < D are diagonal and constant.
u = Pk where P is a constant m X n matrix, m < n.
The equilibrium distribution k®¥(k) is such that Pk = Pk®9(k).

When 7 — 0, approximation of 8tu+):P:1 aifi(u) =0, where the
flux is given by f'(u) = PV'k®9(k).

vV v vy

3Bouchut, "Construction of BGK models with a family of kinetic entropies
for a given system of conservation laws".

4Aregba-Driollet and Natalini, “Discrete kinetic schemes for
multidimensional systems of conservation laws”.



CFL-less kinetic DG scheme

» On unstructured meshes, it is easy to solve the kinetic transport
equations with an implicit upwind Discontinuous Galerkin scheme.

» In practice, the scheme is explicit if the cells are visited in the good
order.

» In this way we obtain explicit unconditionnaly stable schemes !



CFL-less kinetic DG scheme

Further improvements
» High order in space and time with palindromic splitting®;

» Easy parallelization, with a task-based approach and StarPU
runtime system®;

» Applications to: compressible flows, MHD, two-phase flow, etc.”

5Hairer, Lubich, and Wanner, Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations.

5Badwaik et al., “Task-based parallelization of an implicit kinetic scheme”.

“Coulette et al., “High-order implicit palindromic Discontinuous Galerkin
method for kinetic-relaxation approximation”.



Thanks for your attention !

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10.
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