CFL-less explicit schemes for conservation laws based on a kinetic approach Philippe Helluy

Joint work with: F. Drui, E. Franck, L. Navoret

University of Strasbourg, Inria Tonus

"Journée scientifique 2020 du GdR MaNu", October 2020

Outlines

Motivation: kinetic approximations of conservation laws allow to design explicit CFL-less high order schemes. But they involve hidden variables. How to apply boundary conditions on these variables ?

Kinetic relaxation and over-relaxation

Equivalent PDE and boundary conditions

Kinetic relaxation in higher dimensions

Kinetic relaxation and over-relaxation

Relaxation of hyperbolic systems

• Hyperbolic system with unknown $\mathbf{u}(x,t) \in \mathbb{R}^m$:

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0.$$

LHS: non-linear equations ©; RHS: zero ©.

▶ Approximation by Jin-Xin¹ relaxation ($\lambda > 0$, $\varepsilon \to 0^+$)

$$\partial_t \mathbf{u} + \partial_x \mathbf{z} = \mathbf{0}, \tag{1}$$
$$\partial_t \mathbf{z} + \lambda^2 \partial_x \mathbf{u} = \mu, \tag{2}$$

where

$$\mu = \frac{1}{\varepsilon} (\mathbf{f}(\mathbf{u}) - \mathbf{z}).$$

LHS: linear system with constant coefficients O; RHS: non-linear coupling O.

¹Jin and Xin, "The relaxation schemes for systems of conservation laws in arbitrary space dimensions".

Over-relaxation

Let's do splitting. For a rigorous formulation, introduce the Dirac comb:

$$\Psi(t) = \sum_{i \in \mathbb{Z}} \delta(t - i\Delta t).$$

Jin-Xin relaxation is replaced in practice by

$$\partial_t \mathbf{u} + \partial_x \mathbf{z} = 0, \tag{3}$$
$$\partial_t \mathbf{z} + \lambda^2 \partial_x \mathbf{u} = \mu, \tag{4}$$

with

$$\mu(x,t) = \theta \Psi(t) \left(\mathbf{f}(\mathbf{u}(x,t)) - \mathbf{z}(x,t^{-}) \right), \quad \theta \in [1,2].$$

In other words, at times $t = i\Delta t$, **z** has jumps in time and:

$$\mathsf{z}(x,t^+) = \theta \mathsf{f}(\mathsf{u}(x,t)) + (1-\theta)\mathsf{z}(x,t^-).$$

If the relaxation parameter $\theta = 1$, we recover the first order splitting. The **over-relaxation** corresponds to $\theta = 2$.

explicit, CFL-less Kinetic interpretation

We can diagonalize the linear hyperbolic operator. For this, consider the change of variables

$$\mathbf{k}^{+} = \frac{\mathbf{u}}{2} + \frac{\mathbf{z}}{2\lambda}, \quad \mathbf{k}^{-} = \frac{\mathbf{u}}{2} - \frac{\mathbf{z}}{2\lambda}.$$
$$\mathbf{u} = \mathbf{k}^{+} + \mathbf{k}^{-}, \quad \mathbf{z} = \lambda \mathbf{k}^{+} - \lambda \mathbf{k}^{-}.$$

Then

$$\partial_t \mathbf{k}^+ + \lambda \partial_x \mathbf{k}^+ = \mathbf{r}^+, \quad \partial_t \mathbf{k}^- - \lambda \partial_x \mathbf{k}^- = \mathbf{r}^-,$$

where

$$\mathbf{r}^{\pm}(x,t) = \theta \Psi(t) \left(\mathbf{k}^{eq,\pm}(\mathbf{u}(x,t^{-})) - \mathbf{k}^{\pm}(x,t^{-}) \right)$$

and the "Maxwellian" states $\mathbf{k}^{eq,\pm}$ are given by

$$\mathbf{k}^{eq,\pm}(\mathbf{u}) = \frac{\mathbf{u}}{2} \pm \frac{\mathbf{f}(\mathbf{u})}{2\lambda}.$$

Most of the time, the kinetic variables \mathbf{k}^+ and \mathbf{k}^- satisfy free transport equations at velocity $\pm \lambda$, with relaxation to equilibrium at each time step.

Equivalent PDE and boundary conditions

Oscillations of the flux error

We consider the case $\theta = 2$.

Let us introduce the "flux error"

$$\mathbf{y} := \mathbf{z} - \mathbf{f}(\mathbf{u}).$$

• At time $t = i\Delta t$, we see that

$$\mathbf{y}(x,t^+) = -\mathbf{y}(x,t^-).$$

Therefore **y** oscillates around 0 at a frequency $1/\Delta t$.

For the analysis, it is better to consider the solution only at even (or only at odd) times steps t = 2i∆t.

Equivalent PDE analysis

We can prove the following result (more rigorous formulation exists²). **Theorem**: if the solution of the over-relaxation scheme is considered at even time steps, then, up to second order terms in Δt , its equivalent equation in (\mathbf{u}, \mathbf{y}) is the following hyperbolic system of conservation laws

 $\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0,$ $\partial_t \mathbf{y} - \mathbf{f}'(\mathbf{u}) \partial_x \mathbf{y} = 0.$

Remarks:

- **u** satisfies the expected conservative system at order $O(\Delta t^2)$.
- **y** satisfies a non-conservative equation.
- ▶ There is no assumption on the smallness of **y** at the initial time.
- The waves for **u** and **y** move in opposite directions.

 $^{^2 \}rm{Drui}$ et al., "An analysis of over-relaxation in a kinetic approximation of systems of conservation laws".

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward $(0 < \lambda_1 = u c < \lambda_2 = u + c)$. Non-physical initial value of $\mathbf{y} \neq 0$.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

Application to boundary conditions

The analysis gives hints to build stable boundary conditions on z.

- Roughly speaking, at an inflow boundary for u, one should impose u and not y, while at an outflow boundary for u one should impose y and not u.
- This also means that one should impose exactly *m* boundary conditions, where *m* is the dimension of **u**. This is compatible with the characteristics of the kinetic system.
- We expect that y ≃ 0. However it is better to impose a Neumann boundary condition ∂_xy = 0 for not perturbing the time oscillations of y.

We consider a simple transport equation at constant velocity v > 0.

$$\mathbf{u} = \boldsymbol{\rho}, \quad \mathbf{f}(\mathbf{u}) = \boldsymbol{\rho} \mathbf{v}.$$

Smooth initial data. Three strategies of boundary conditions. Typical plot for the three stategies.

Error rate

Isothermal Euler equations

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

Smooth initial data corresponding to a supersonic flow moving rightward. We test the previous three strategies of boundary conditions.

Error rate for the three strategies

Kinetic relaxation in higher dimensions

Kinetic model in higher dimensions^{3,4}

Vectorial kinetic equation

$$\partial_t \mathbf{k} + \sum_{i=1}^{D} \mathbf{V}^i \partial_i \mathbf{k} = \frac{1}{\tau} (\mathbf{k}^{eq} (\mathbf{k}) - \mathbf{k}).$$
(5)

 $\mathbf{k}(\mathbf{x},t) \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^D$.

- The matrices \mathbf{V}^i , $1 \le i \le D$ are **diagonal** and **constant**.
- $\mathbf{u} = \mathbf{Pk}$ where \mathbf{P} is a constant $m \times n$ matrix, m < n.
- The equilibrium distribution $\mathbf{k}^{eq}(\mathbf{k})$ is such that $\mathbf{P}\mathbf{k} = \mathbf{P}\mathbf{k}^{eq}(\mathbf{k})$.
- ▶ When $\tau \to 0$, approximation of $\partial_t \mathbf{u} + \sum_{i=1}^D \partial_i \mathbf{f}^i(\mathbf{u}) = 0$, where the flux is given by $\mathbf{f}^i(\mathbf{u}) = \mathbf{P}\mathbf{V}^i\mathbf{k}^{eq}(\mathbf{k})$.

³Bouchut, "Construction of BGK models with a family of kinetic entropies for a given system of conservation laws".

⁴Aregba-Driollet and Natalini, "Discrete kinetic schemes for multidimensional systems of conservation laws".

CFL-less kinetic DG scheme

- On unstructured meshes, it is easy to solve the kinetic transport equations with an implicit upwind Discontinuous Galerkin scheme.
- In practice, the scheme is **explicit** if the cells are visited in the good order.

In this way we obtain explicit unconditionnaly stable schemes !

CFL-less kinetic DG scheme

Further improvements

- ▶ High order in space and time with palindromic splitting⁵;
- Easy parallelization, with a task-based approach and StarPU runtime system⁶;
- ▶ Applications to: compressible flows, MHD, two-phase flow, etc.⁷

⁵Hairer, Lubich, and Wanner, *Geometric numerical integration:* structure-preserving algorithms for ordinary differential equations.

⁶Badwaik et al., "Task-based parallelization of an implicit kinetic scheme".

⁷Coulette et al., "High-order implicit palindromic Discontinuous Galerkin method for kinetic-relaxation approximation".

