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Inverse Problems and Data Assimilation

General Ideas

Inverse problems: given a set of observations, we look for the casual
factors that produced them.

Data Assimilation: time dependent problems, forecasting.

Observations can be noisy and of very different nature.

This talk:
Applications involving PDE models.
We explore whether our algorithms are optimal in some sense.
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Neutronics

Observations: Neutron flux

PDEs: Neutron Diffusion/Transport

Figure: Sensor placement on a PWR for neutron flux reconstruction.
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Structure of the talk

1 Mathematical framework for inverse problems involving PDE models
2 Optimal reconstruction benchmarks
3 Practical algorithms using model reduction and machine learning

techniques

Collaborators

Theory: A. Cohen, J. Nichols, W. Dahmen, P. Binev, R. DeVore
Applications: F. Galarce, D. Lombardi, J.F. Gerbeau, J. Aghili, R. Chakir
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Part I

Mathematical framework

Ref: [BCD+17] Data Assimilation in Reduced Modelling. (SIAM UQ, 2017)
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Mathematical setting

Ambient space V :
Hilbert space over a domain Ω ⊂ Rk .
Potentially very high or infinite dimension.

Parametrized PDE to model complex physical system:

B(y)u = f (y)

where
y = (y1, . . . , yd ) ∈ Y ⊂ Rd

is a vector of parameters ranging in some domain Y ⊂ Rd .

Parameter to solution map:

y 7→ u(y) ∈ V

Solution manifold:

M := {u(y) : y ∈ Y} ⊂ V

is the set of all admissible solutions.
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Mathematical setting

Forward problem: Given y ∈ Y, compute u(y) quickly.

Inverse problem: We observe a vector of linear measurements

z = (z1, . . . , zm) ∈ Rm

where
zi = `i (u) = 〈wi , u〉 , i = 1, . . . ,m.

and `i are independent linear functionals (wi are the Riesz representers).
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Mathematical setting

Types of inverse problems: We have the forward mappings

y ∈ Y ⊂ Rd 7→ u(y) ∈ M 7→ z ∈ Rm

with zi = `i (u).

We seek to approximate the inverse mappings:
State Estimation:

z 7→ u∗(z) ≈ u

Parameter Estimation:

z 7→ y∗(z) ≈ y

when z = `(u(y)).
In time-dependent problems: find initial condition, forecast of u...

Severely ill-posed problems when d > m.
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Guiding Example

Elliptic PDE with piecewise constant diffusion field

− div(a∇u) = 1 on Ω = [0, 1]2, (well posed in V = H1
0 (Ω))

a = a(x , y) = 1+ 0.9∑
j

yjχDj
(x), y = (yj ) ∈ [−1, 1]16

`i (u) = 〈wi , u〉 =
∫

Ω
e−

||x−xi ||2

σ2 u(x)dx
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Part II

Optimal reconstruction benchmarks

Ref: [CDMN20] Nonlinear reduced models for state and parameter estimation
(arxiv, 2020)
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State Estimation

Running Assumptions: No noise, no model error.

Goal: From the unknown u ∈ M, we are given

`i (u) = 〈ωi , u〉 , i = 1, . . . ,m,

Defining the sampling space

W := span{ω1, . . . ,ωm}

we have the equivalence

`i (u), i = 1, . . . ,m ⇔ ω = PW u.

Our task is to find a reconstruction algorithm

A : W → V

such that A(PW u) approximates the state u.
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We look for A : W → V such that A(PW u) approximates the state u.
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Optimal reconstruction algorithms

The reconstruction performance of an algorithm A : W → V is

E (A,M) = max
u∈M

||u − A(PW u)||

and the optimal performance among all algorithms is

E ∗(M) = min
A:W→V

E (A,M).

There is a simple mathematical description of an optimal map A∗.
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Optimal reconstruction algorithms

Manifold slices: For any ω ∈ W , we define

Mω := {u ∈ M : PW u = ω}

The Chebyshev ball of Mω is the closed ball of minimal radius that
containsMω.

Example: V = R2, W = span{ex} andM is L-shaped.
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Optimal algorithms are not feasible in practice

Lemma: An optimal reconstruction map is given by

A∗wc(ω) = cen(Mω)

where cen(Mω) is the center of the Chebyshev ball ofMω.

Reconstruction width: We define the diameter ofM from W by

σ0 := σ(M,W ) = max{diam(Mω) : ∀ω ∈ W }.

Any algorithm A cannot deliver a performance better than σ0/2,

E ∗(M) = σ0/2
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Examples

Example: V = R2, W = span{ex} andM is L-shaped.
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Examples

Example: V = R2, W = span{ex} andM is any shape.

Practical issue: A∗wc is not easily computable sinceM may have a
complicated geometry which is in general not given explicitly.
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Part III

Practical algorithms using model reduction
and machine learning techniques

. Linear/Affine mappings A : W → V

Nonlinear mappings A : W → V

Piecewise affine algorithms
Beyond piecewise affine: OT, Neural Networks (ongoing works).

Ref: [CDD+20] Optimal reduced model algorithms for data-based state
estimation (SINUM, 2020)
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Affine reconstruction algorithms

Characterisation: For any given affine map A : W → V there exists an
affine space V aff

n = ū + Vn of dimension 1 ≤ n ≤ m such that

A(ω) = argmin
v∈ω+W⊥

dist(v , ū + Vn), ∀ω ∈ W

where
dist(v , ū + Vn) = ‖(v − ū)− PVn (v − ū)‖.

Conversely: For any given affine space V aff
n = ū + Vn, the above

formula for A(ω) yields an affine reconstruction algorithm.

Common choices for V aff
n are polynomials, reduced models...
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Affine reconstruction algorithms

Practical computation: For a given V aff
n = ū + Vn, computing

A(ω) = argmin
v∈ω+W⊥

dist(v , ū + Vn), ∀ω ∈ W

is easy (least-squares problem with a correction).
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Affine reconstruction algorithms

A(ω) = argmin
u∈ω+W⊥

dist(u, ū + Vn), ∀ω ∈ W

Error:

E (A,M) = max
u∈M

‖u − A(ω)‖ ≤ 1
β(Vn,Wm)

max
u∈M

dist(u, ū + Vn)

where
β(Vn,Wm) := inf

v∈Vn

‖PWmv‖
‖v‖ ∈ (0, 1]

plays the role of a stability constant. It can be interpreted as

β(Vn,Wm) = cos(θVn,Wm ), θVn,Wm ∈ [0,π/2].
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Limitations of Affine Algorithms

We said that if A : W → V is an affine mapping, then its image A(W ) is
contained in a linear space of dimension ≤ m+ 1.

So its performance is limited by below by the Kolmogorov m+ 1-width,

dm+1(M) := min
E⊆V

dim(E )≤m+1

max
u∈M

dist(u,E )

in the sense that

dm+1(M) ≤ min
A:W→V
A linear

max
u∈M

||u − A(PW u)||.

Depending onM and W , we may have

1
2

σ0 = min
A:W→V

A any mapping

max
u∈M

||u − A(PW u)|| � dm+1(M)

In order to overcome the limitation of dm+1(M) for the linear
mappings, we have to build nonlinear ones.
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We can have 1
2σ0 � dm+1(M)
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Part III

Practical algorithms using model reduction
and machine learning techniques

Linear/Affine mappings A : W → V

Nonlinear mappings A : W → V

. Piecewise affine algorithms
Beyond piecewise affine: OT, Neural Networks (ongoing works).

Ref: [CDMN20] Nonlinear reduced models for state and parameter estimation
(arxiv, 2020)
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Piecewise-affine algorithms

Consider a partition of the parameter domain

Y = Y1 ∪ · · · ∪ YK  M =M1 ∪ · · · ∪MK .

For eachMk , we may construct a family of affine spaces

Vk , dim(Vk ) = nk , k = 1, . . . ,K

such that
εk := max

u∈Mk

dist(u,Vk )

and bounded inverse inf-sup constant

βk := β(Vk ,W ) > 0.

For any prescribed ε > 0 and 1 ≥ β > 0, by taking K large enough, we
may impose that

max
k=1,...,K

εk ≤ ε and max
k=1,...,K

βk ≥ β > 0.
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Model selection

To each Vk corresponds an affine algorithm Ak .

From the given data ω = PW u, we need to select between the
reconstructions

uk = Ak (w), k = 0, . . . ,K .

Note that since u ∈ M there exist k = k(u) such that u ∈ Mk .
Therefore, for this particular k ,

‖u − Ak (u)‖ ≤ β−1k εk ≤ β−1ε.

But this estimate is not feasible since it uses the knowledge of k(u).

We only know the data ω and want to use it for selecting a k∗ = k(ω).
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Model selection

We would like to select the reconstruction that is closest toM

k∗ = k(ω) = argmink=1,...,Kdist(Ak (ω),M),

but
dist(Ak (ω),M) := min

y∈Y
‖u(y)− Ak (ω)‖.

is not easily computable.

In uniformly coercive problems, we have that the residual

R(v , y) := ‖B(y)v − f (y)‖2V ′ , ∀(v , y) ∈ V × Y

is uniformly equivalent to the norm

r‖v − u(y)‖V ≤ R(v , y) ≤ R‖v − u(y)‖V , ∀v ∈ V .

We can thus equivalently compute

S(Ak (ω),M) := min
y∈Y
R(v , y), −→

mink=1,...,K
k̂(ω)

which is a convex problem if affinely parametrized PDE.
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Model selection

We define the δ-offset ofM

Mδ :=M+ B(0, δ)

and its diameter with respect to W

σδ = σδ(M,W ) := max{‖u − v‖ : u, v ∈ Mδ, u − v ∈ W⊥}

Theorem 1

For the above selection k̂(ω) with the residual, we have

1
2

σ0 ≤ max
u∈M

‖u − Ak̂ (ω)‖ ≤ 1
2

σκβ−1ε,

with κ = R/r .

We can make β−1ε→ 0 by increasing K . In the limit, we reach the
performance of the optimal algorithm.
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Practical algorithm for model selection

Goal: Generate a partition in Y such that

max
k=1,...,K

εk ≤ ε and max
k=1,...,K

βk ≥ β.

or such that
max

k=1,...,K
β−1k εk ≤ δ

Dyadic partitioning: Step j > 0: We start from

Y = Y1 ∪ . . .YKj
 M =M1 ∪ · · · ∪MKj

.

For each k , we associate the hierarchy of reduced bases

Vn,k = ūk + Vn,k , n = 0, . . . ,m,

with
V0,k ⊂ · · · ⊂ Vn,k ⊂ · · · ⊂ Vm,k , dim(Vn,k ) = n,

and
dist(Mk ,Vn,k ) ≤ εn,k , and βn,k := β(Vn,k ,W ).
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Practical algorithm for model selection

Split: Depending on the goal, define the test quantity

τk = min
n=0,...,m

max

{
εn,k

ε
;

β

βn,k

}
or

τk = min
n=0,...,m

β−1n,k εn,k

δ
.

If
τk > 1 ⇒ Split cell k .

Olga MULA (Paris Dauphine) ROM for Inverse Problems 31/ 41



Numerical example

Elliptic PDE with piecewise constant diffusion field

− div(a∇u) = 1 on Ω = [0, 1]2, (well posed in V = H1
0 (Ω))

a = a(y) = 1+ ∑
j

cjyjχDj
, y = (yj ) ∈ [−1, 1]16, `i (u) =

∫
Ω
e−

||x−xi ||2

σ2 u(x)dx
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cj =


0.9j−2 elliptic ++
0.99j−2 elliptic +
0.9j−1 elliptic -
0.99j−1 elliptic - -
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Numerical example
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Part III

Practical algorithms using model reduction
and machine learning techniques

Linear/Affine mappings A : W → V

Nonlinear mappings A : W → V

Piecewise affine algorithms
. Beyond piecewise affine: OT, Neural Networks (ongoing works).

Ref: [ELMV20] Nonlinear model reduction on metric spaces. Application to
one-dimensional conservative PDEs in Wasserstein spaces (M2AN, 2020)
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Reconstruction with Machine Learning techniques

Reasons to go beyond piecewise affine:
Partition may be suboptimal
Can we discover in one step the best partition?
In transport dominated problems, linear reduced spaces do not give
much accuracy.

Ongoing research on:
Can approximation classes such as Neural Networks help for forward
and inverse reduced modelling?
What can popular Machine Learning metrics such as Optimal
Transport distances bring?
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Neural Networks can discover the right partition

State: u = (x , y) ∈ M (step)

Observation PW u = x , W = span{ex}.

Algorithm: A : W 7→ R2, A(x) = (x , y), A = NNθ

Training: minθ∈Θ
1
N ∑N

i=1 ‖ui −NNθ(xi )‖2
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Forward Reduced Modelling using Wasserstein distances

Approximation of Burgers equation with n = 5 modes.
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ROM using O.T. distances can reconstruct shocks with few modes.
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