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Inverse Problems and Data Assimilation

Inverse problems: given a set of observations, we look for the casual
factors that produced them.

Data Assimilation: time dependent problems, forecasting.
Observations can be noisy and of very different nature.

This talk:
@ Applications involving PDE models.
@ We explore whether our algorithms are optimal in some sense.
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Neutronics

Observations: Neutron flux

PDEs: Neutron Diffusion/Transport

Figure: Sensor placement on a PWR for neutron flux reconstruction.
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Structure of the talk

© Mathematical framework for inverse problems involving PDE models
@ Optimal reconstruction benchmarks

© Practical algorithms using model reduction and machine learning
techniques

Collaborators

Theory: A. Cohen, J. Nichols, W. Dahmen, P. Binev, R. DeVore
Applications: F. Galarce, D. Lombardi, J.F. Gerbeau, J. Aghili, R. Chakir
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Part |

Mathematical framework

Ref: [BCD'17] Data Assimilation in Reduced Modelling. (SIAM UQ, 2017)
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Mathematical setting

Ambient space V:
o Hilbert space over a domain () C R*.
@ Potentially very high or infinite dimension.

Parametrized PDE to model complex physical system:
B(y)u=f(y)

where
y:(yl,...,yd)GYCIRd

is a vector of parameters ranging in some domain Y C IR9.

Parameter to solution map:
y—=u(y)eVv
Solution manifold:
M:={uly) :yeY}tCV

is the set of all admissible solutions.
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Mathematical setting

Forward problem: Given y € Y, compute u(y) quickly.
Inverse problem: We observe a vector of linear measurements
z=(z1,...,2m) €R™

where
zi=Vli(u) ={wj,u), i=1....,m

and /; are independent linear functionals (w; are the Riesz representers).
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Mathematical setting

Types of inverse problems: We have the forward mappings
yeYCRY — uly)eM — zeR™
with z; = ¢;(u).

We seek to approximate the inverse mappings:

o State Estimation:

z—u*(z) =~ u
@ Parameter Estimation:

zey'(z) =y

when z = l(u(y)).
@ In time-dependent problems: find initial condition, forecast of w...

Severely ill-posed problems when d > m.

Olga MULA (Paris Dauphine) ROM for Inverse Problems 8/ 41



Guiding Example

Elliptic PDE with piecewise constant diffusion field
—div(aVu) =1 on Q= [0,1]2, (well posed in V = H}(Q))
a=al(xy) =1+09) yxp,(x). y=(y)€[-11]*°

J

() = (i) = [ & F (e

00 02 04 06 08 10

u(y) Pos. Sensors w;
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Part Il

Optimal reconstruction benchmarks

Ref: [CDMN20] Nonlinear reduced models for state and parameter estimation
(arxiv, 2020)
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State Estimation

Running Assumptions: No noise, no model error.

Goal: From the unknown u € M, we are given
bi(u) =A{wju)y, i=1....m,
Defining the sampling space
W = span{wy, ..., wm}
we have the equivalence
li(u),i=1....m < w=Pyu.
Our task is to find a reconstruction algorithm
A:W—>V

such that A(P\yu) approximates the state u.
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We look for A: W — V such that A(Py u) approximates the state u.
[m] = = =
12/ a1

ments P_W u(y)



Optimal reconstruction algorithms

The reconstruction performance of an algorithm A: W — V is

E(AM) = max [|u—A(Pwu)l|

and the optimal performance among all algorithms is

E*(M)= min E(AM).

AW—=V

There is a simple mathematical description of an optimal map A*.
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Optimal reconstruction algorithms

Manifold slices: For any w € W, we define
My ={ue M : Pyu=uw}

The Chebyshev ball of M, is the closed ball of minimal radius that
contains M,,.

Example: V = R?, W = span{e,} and M is L-shaped.
Mw’

g

! : w

w w'
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Optimal algorithms are not feasible in practice

Lemma: An optimal reconstruction map is given by
Al (w) = cen(My,)

where cen(M,,) is the center of the Chebyshev ball of M,,.

Reconstruction width: We define the diameter of M from W by
0p = (M, W) = max{diam(M,,) : Yw € W}.
Any algorithm A cannot deliver a performance better than og/2,

E*(M) =09/2
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Example: V = R?, W = span{e,} and M is L-shaped.

M
[ A (w) = cen(M,,) | 1 -
M.,
M\
|
.. - 1%
w w
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Examples

Example: V = R?, W = span{e,} and M is any shape.

| A% (w) = cen(M,,) ‘

M., Mo
M A

go

Y
. : w

w w

Practical issue: A} is not easily computable since M may have a
complicated geometry which is in general not given explicitly.
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Part 1l

Practical algorithms using model reduction
and machine learning techniques

> Linear/Affine mappings A: W — V
@ Nonlinear mappings A: W — V

o Piecewise affine algorithms
o Beyond piecewise affine: OT, Neural Networks (ongoing works).

Ref: [CDD'20] Optimal reduced model algorithms for data-based state
estimation (SINUM, 2020)
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Affine reconstruction algorithms

Characterisation: For any given affine map A: W — V there exists an
affine space V,?ff = i+ V, of dimension 1 < n < m such that

A(w) = argmin dist(v,d+ V,), Ywe W
vEw+ WL

where
dist(v, a+ Vi) = ||[(v — @) — Py, (v — )]

Conversely: For any given affine space V,?ff = i+ V), the above
formula for A(w) yields an affine reconstruction algorithm.

Common choices for V2ff are polynomials, reduced models...
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Affine reconstruction algorithms

Practical computation: For a given V,?ff = 0+ V,, computing

A(w) = argmin dist(v,d+ V,), Ywe W
vew+Wt

is easy (least-squares problem with a correction).

:w = Pyu
w+ W
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Affine reconstruction algorithms

A(w) = argmin dist(u,d+ V,), Yw e W
ucw+ Wt

Error:

E(AM) = m?\>/<l||u— maxdlst(u i+ V)
ue

1
AW < gy

where p
B(Va, Wy = inf LWl o g 4
vevo vl

plays the role of a stability constant. It can be interpreted as

‘B(Vn, Wm) = COS(QVH,Wm)v Qvanm € [0, 7'[/2].
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Limitations of Affine Algorithms

We said that if A: W — V is an affine mapping, then its image A(W) is
contained in a linear space of dimension < m + 1.

So its performance is limited by below by the Kolmogorov m + 1-width,

dmi1(M) = fi‘nc”\]/ max dist(u, E)
u
dim(E)<m+1

in the sense that

d, < i — .
mi1(M) < min - max |lu— A(Pwu)l
A linear

Depending on M and W, we may have

1

i o

70= ,min - max[lu—A(Pwu)l| < dmi1(M)
A any mapping

In order to overcome the limitation of d,,1(M) for the linear
mappings, we have to build nonlinear ones.
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We can have %(70 < dpr1(M)
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Part 1l

Practical algorithms using model reduction
and machine learning techniques

e Linear/Affine mappings A: W — V
@ Nonlinear mappings A: W — V

> Piecewise affine algorithms
o Beyond piecewise affine: OT, Neural Networks (ongoing works).

Ref: [CDMN20] Nonlinear reduced models for state and parameter estimation
(arxiv, 2020)
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Piecewise-affine algorithms

Consider a partition of the parameter domain
Y=Y{U---UYx ~~M=MjU---UMkg.
For each M, we may construct a family of affine spaces
Vi, dim(Vk) =n,, k=1,....K
such that

ek = max dist(u, Vy)
uG./\/lk

and bounded inverse inf-sup constant

Bi == B(Vi, W) > 0.
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Piecewise-affine algorithms

Consider a partition of the parameter domain
Y=Y{U---UYx ~~M=MjU---UMkg.
For each M, we may construct a family of affine spaces
Vi, dim(Vk) =n,, k=1,....K
such that

ek = max dist(u, Vy)
uG./\/lk

and bounded inverse inf-sup constant
Bi == B(Vi, W) > 0.

For any prescribed € > 0 and 1 > B > 0, by taking K large enough, we
may impose that

Olga MULA (Paris Dauphine) ROM for Inverse Problems 25/ 41



Model selection

To each V| corresponds an affine algorithm Ag.

From the given data w = Py u, we need to select between the
reconstructions
Uk:Ak(W), kZO,,K
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Model selection

To each V| corresponds an affine algorithm Ag.

From the given data w = Py u, we need to select between the
reconstructions

Uk:Ak(W), kZO,,K

Note that since u € M there exist k = k(u) such that v € M.
Therefore, for this particular k,

lu—Ac(u)]| < B tex < pte.
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Model selection

To each V| corresponds an affine algorithm Ag.

From the given data w = Py u, we need to select between the
reconstructions
Uk:Ak(W), kZO,,K

Note that since u € M there exist k = k(u) such that v € M.
Therefore, for this particular k,

lu—Ac(u)]| < B tex < pte.

(w).

But this estimate is not feasible since it uses the knowledge of k(u)
k

We only know the data w and want to use it for selecting a k* =
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Model selection

We would like to select the reconstruction that is closest to M

k* = k(w) = argmin, _; ,dist(Ax(w), M),

but
dist(Ax(w), M) = min |u(y) — Ax(w)]

ye

is not easily computable.
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Model selection

We would like to select the reconstruction that is closest to M

k* = k(w) = argmin, _; ,dist(Ax(w), M),

but
dist(Ax(w), M) = min |u(y) — Ax(w)]

ye

is not easily computable.

In uniformly coercive problems, we have that the residual
R(v.y) = |By)v =)y V(v.y) e VxY
is uniformly equivalent to the norm
rlv—uly)llv < R(v.y) <Rllv—uly)lly, VYveV.
We can thus equivalently compute

S(Ak(w), M) := miQR(v,y), — k(w)

Y€ ming—1,. K

which is a convex problem if affinely parametrized PDE,
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Model selection

We define the J-offset of M
My = M+ B(0,9)
and its diameter with respect to W

05 = 0s(M, W) :=max{||lu—v|| : u,veMs u—ve W}

For the above selection k(w) with the residual, we have

1 1
50'0 < 523\)/(1 ||u* A&(W)H < EUKﬁflsv

withkx = R/r.

We can make ,[3718 — 0 by increasing K. In the limit, we reach the
performance of the optimal algorithm.
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A% (w) = cen(Ms )
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Practical algorithm for model selection

Goal: Generate a partition in Y such that

or such that

Dyadic partitioning: Step j > 0: We start from
Y=YiU...Yg > M=MU---UMkg,.
For each k, we associate the hierarchy of reduced bases
Vok =bk+ Vo, n=0,..., m,

with
VO,k cC---C Vn,k Cc---C Vm’k, dim(Vn’k) = n,

and
diSt(Mk, Vn,k) < En ks and ,Bn,k = ﬁ(Vn,k, W)
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Practical algorithm for model selection

Split: Depending on the goal, define the test quantity

. {Sn,k_ :B }
T = n01|n max :

n=0,..., m & ,Bn,k
or 1
. . ,Bnykgn,k
= min
k n=0,...,m 1)
If

T >1 = Split cell k.
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Numerical example

Elliptic PDE with piecewise constant diffusion field

—div(aVu) =1 on Q =[0,1]2, (well posed in V = H}(Q))

_ el

a:a(y):1+12qyjmj, y = (y) € [-1,1]*, e,-(u):/ne T2 u(x)dx

0.4 0.03 ¢
y u(y) Pos. Sensors w;
0.9/72 elliptic ++
0.99;72  elliptic +
G = .1 A
0.9/ elliptic -

0.99;71 elliptic - -
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Numerical example

Error bounds ok w/ dim(W,,) = 16, dim(Y) = 4

10
%
ET
"
&
10" o —
12 4 18
K= Number of local reduced bases in the noniinear family
Error bounds o w/ dim(Wp) = 16, dim(Y) = 16
£
E0?
" N
&
12 4 & 8 10 12 14 16 18 20
K = Number of local reduced bases in the nonlinear family
— =099 — =091

Error bounds ok w/ dim(Wp,) = 4, dim(Y) =4

max
13X, it

s
Error bounds ox w/ dim(Wp,) = 4, dim(Y) = 16
1
&
.
&

10 —
12 4 6 8 10 12 14 16 18 20
K =Number of local reduced bases in the nonlinear family
— =099 =091
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Part 1l

Practical algorithms using model reduction
and machine learning techniques

e Linear/Affine mappings A: W — V
@ Nonlinear mappings A: W — V

o Piecewise affine algorithms
> Beyond piecewise affine: OT, Neural Networks (ongoing works).

Ref: [ELMV20] Nonlinear model reduction on metric spaces. Application to
one-dimensional conservative PDEs in Wasserstein spaces (M2AN, 2020)
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Reconstruction with Machine Learning techniques

Reasons to go beyond piecewise affine:
@ Partition may be suboptimal
@ Can we discover in one step the best partition?
@ In transport dominated problems, linear reduced spaces do not give
much accuracy.
Ongoing research on:
@ Can approximation classes such as Neural Networks help for forward
and inverse reduced modelling?
@ What can popular Machine Learning metrics such as Optimal
Transport distances bring?
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Neural Networks can discover the right partition

State: u = (x,y) € M (step)
Observation Py u = x, W = span{e.}.
Algorithm: A: W — R?, A(x) = (x,y), A=NN

Training: mingce & YN 4 |Juj — N Np(x7)||?

Prediction tests

—054

~1.04

-15 T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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Forward Reduced Modelling using Wasserstein distances

Approximation of Burgers equation with n = 5 modes.

0.8

0.6

3
504
0.2
0.0
-1 0 1 2 3 a
0.8 0.8
0.6 0.6
< 0.4 >
g £0.4
0.2
0.2
0.0
0.0
-1 0 1 2 3 a -1 0 1 2 3 a
X x

ROM using O.T. distances can reconstruct shocks with few modes.
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CEMRACS 2021
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