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Nonlinear algebraic system

Model problem: Find u e RY

B(u) + Au = b, b=>0

B(w)

Assumptions:
m 3;: RT — R™ increasing and concave, 3(0) < +0
m J(u) = f'(u) + A is M-matrix:
J(u)~t > 0and (J(u));; <0,i#j
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Nonlinear algebraic system

Model problem: Find u e RY

B(u) + Au = b, b=>0

B(w)

Assumptions:
m 3;: RT — R™ increasing and concave, 3(0) < +0
m J(u) = f'(u) + A is M-matrix:
Ja)"' = 0and (J(u))i; <0,i#j

Objective: Efficient Newton-like method
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Motivation
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Approximate solution of nonlinear PDEs

Nonlinear PDE
0tB(u) + L(u) =0

L is a linear elliptic operator.

Nonlinear discrete problem

g(un+1) - 6(un) + Aun+1 =0
Aty
Discretization
m Implicit in time
m Monotone discretization of L:

m TPFA finite volumes
m P finite elements with mass-lumping (on an appropriate mesh)
m Upstream weighting for convection
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Approximate solution of nonlinear PDEs

Nonlinear PDE
0tB(u) + L(u) =0

L is a linear elliptic operator.
Nonlinear discrete problem

ﬂ(un+1) - Bu™) n+l _
A—tn + Au =0

Applications in Geosciences:
B Porous media equation
m Contaminant transport with adsorption
m Richards’ equation
n ...
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Applications: porous media-like equations

B(u)

Porous media equation

5tu1/m—Au=0, m>1
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Applications: porous media-like equations

B(w)
Porous media equation
6tu1/m—Au:0, m>1
Contaminant transport with adsorption
0t (u+ a(u)) —div (Vu +uV) =0 Blu)
—_—

dissolved + adsorbed conc.

Freundlich isotherm

a(u) =cu®™, >0, m>1
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Applications: porous media-like equations

B(u)

Porous media equation

6tu1/m—Au:0, m>1

Contaminant transport with adsorption

ot (u+ a(u)) —=div (Vu + uV) =0 Blu)
—_— /

dissolved + adsorbed conc.
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a(u) = cu™, ¢>0, m>1

Limit case m — +o0
0tv + L(u) =0, v e B(u)
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Applications: porous media-like equations

B(u)
Porous media equation
o™ — Au =0, m>1
Contaminant transport with adsorption
ot (u+ a(u)) —=div (Vu + uV) =0 Blu)
—_———

dissolved + adsorbed conc.
Freundlich isotherm

a(u) = cu™, ¢>0, m>1

Limit case m — +00
0tv + L(u) =0, v e B(u)

® (3 is maximal monotone

B Connections with obstacle problems (Brugnano & Sestini '09)
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Applications: porous media-like equations

B(u)

Porous media equation

5tu1/m—Au=0, m>1

Contaminant transport with adsorption

0t (u+ a(u)) —div (Vu +uV) =0 Bw)
—_— /

dissolved + adsorbed conc.

Freundlich isotherm

1/m
k)

a(u) = cu c>0, m>1

Limit case m — +0o0

Otv + L(u) =0, v € B(u)

Nonlinear solver must be robust w.r.t. to the shape of 8

WaNG2050 June 16, 2020 5/28



Richards’ equation

Richards’ equation
O0ts —div (A(s) (Vp—g)) =0,

Natural variables
B pressure p

W saturation s

s=85(p)

Curve s = S(p) reflects the macroscopic capillary effects

AN 2020
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Richards’ equation

Richards’ equation
ors —div(A(s) (Vp—g)) =0, s =S(p)

Natural variables
B pressure p

B saturation s

s=Sp)

Introducing Kirchhoff transform

wmzfxmmm
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Richards’ equation

We obtain Richards’ equation using generalized pressure
Ors — Au = —div (A(s)g), s = B(u)
with B(u) := S(U1(u))

B(u)
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Richards’ equation

We obtain Richards’ equation using generalized pressure
Ors — Au = —div (A(s)g), s = B(u)

with B(u) := S(U1(u))

B Using semi-implicit discretization we find

B(u) + Au=>b
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Objectives

Model problem: Find u e RN

B(u) + Au = b, b

\%
=}

B(w)

Assumptions:
m 3;: RT — R™ increasing and concave, 3;(0) < +
m ('(u) + A is M-matrix

Objective: Newton-like iterative method
m efficient and robust w.r.t. to the shape of

B with guarantied (semi-)global convergence
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Monotone Newton Theorem versus numerical experiment
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Monotone Newton's method

Let
F(u) =3(u)+ Au—>b

Newton's method:

g =up — F'(ug) ' F(ag), k=0

Theorem (Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70))
Let ug satisfy F(ug) < 0, then
B uy converges to the unique solution ux

B ug <ugy) <uforallk>=0
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Monotone Newton's method

Let
F(u) =pB(u)+ Au—>b

Newton's method:

w1 = uy — F(ug) " F(uy), k=0

Theorem (Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70))
Let ug satisfy F(up) < 0, then
B uy converges to the unique solution ux

B u; <upy Sux forallk>0

Main ingredients:
B F is concave (or convex)
B F/(u) is an M-matrix
lllustration (N = 1)
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Monotone Newton's method

Let
F(u)=p3(u)+Au—b

Newton's method:

w1 =uy — F(ug) " F(uy), k=0

Theorem (Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70))
Let ug satisfy F'(up) < 0, then
B uy converges to the unique solution ux

B ug <ugy) Suforallk>0

Using nested iterations concavity (convexity) assumption can be removed
B Piece-wise linear systems: Brugnano & Casulli '09

B Systems with diagonal nonlinearities: Casulli & Zanolli '12
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Monotone Newton's method

Let
F(u) = p(u) + Au—b

Newton's method:

g1 =ug — F'(ug) 7 F(uy), k=0

Theorem (Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70))

Let ug satisfy F(ug) < 0, then
B uj converges to the unique solution ux

B ug <ugy) Su forallk>0

The method is semi-globally convergent. s it efficient?
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1D numerical experiment

Porous media equation on (0,1) x (0,7)
OBu) — 2, u=0,  Blu)=u"™

with Neumann boundary conditions
m Inflow at z = 0: —0,u(0,t) = ¢ >0
m No-flowatz =1
m Almost "dry” initial condition: B(u(z,0)) = 10710

1.8
\——‘time step 1
16 lo——otime step 10
1.4 [s—s—stime step 50
[e—o—atime step 100

1.2

B(u)

0.8
0.6
0.4
0.2

0 01 02 03 04 05 06 0.7 0.8 09 1
T

Solution profile at different time steps
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Performance assessment: ©— and v—formulations

Original u-formulation:

B(u)+Au—-b=0

Alternative v-formulation:

v+ ABTI(v)=b =0

Different values of m > 1 in S(u) = u

0 ===

N S ——

-2 \

-4 Al
] N
S \
T -8 \
~—

2 -10
0
S 12

_14 ——,

lo—o—om =8

-16 j——sm =16

|o—o—0 m = 32

-18

50

60

Newton s |teration

1/m

m Dashed: Original formulation is inefficient, manly because 8'(0) = +o0.
m Solid: Alternative formulation is more efficient, but concavity is lost:

note that (A);;(A)q;

K. Brenner (Inria, LJAD)

<0,i#7

MaNu 2020
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Performance assessment: ©— and v—formulations

Original u-formulation:

B(u)+Au—-b =0

Different values of m > 1 in S(u) =

Alternative v-formulation:

v+ ABTI(v)=b=0

u

log;,(err)

\

50

60

Newton s |teration

B Performance of both formulations depends on m

m Can we find some even more efficient primary variable?

K. Brenner (Inria, LJAD)

MaNu 2020

1/m
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Variable switching by parametrization
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Adaptive choice of the variable

v = B(u)

u — formulation

v — formulation

B Switching between v and u may be a good idea

m Well known for Richards’ equation
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Efficiency of variable switching

m v-formulation: v — A1 (v) =0
m variable switching: PDE?

log;q(err)

2 4 6 8 10 12 14 16 18
Newton's iteration

m Variable switching: is more efficient and is robust w.r.t. m

®m Drawback: implementation using if/else conditions
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Graph parametrization

v = f(u)

u — formulation

Parametrization of the graph v = B(u):

Let uw,v : RT — R¥ such that
v — formulation

o(1) = B(u(r)) vreRT

PDE in terms of the new variable 7

ov(r) — Au(r) =0

Variable switching: v ="15(7)

max(?' (1), 7' (1)) = 1

u =u(T)
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Graph parametrization

v
v € B(u)
Parametrization of the graph v = B(u): u — formulation
Let w,v : RT — R¥ such that
(1) = B((r)) vreRT v — formulation
PDE in terms of the new variable 7 w

0¢v(T) — Au(r) =0

Variable switching:
max(?'(7),7' (1)) = 1

B Multi-valued closure v € 8(u) is Ok
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Estimates (B. & Cances '17)

Define Fr (1) =v(7) + Au(r) — b e
Estimates on F.(T) v=7(r)
Il I < C /

uniformly w.r.t. 7 and the shape of 3.
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Estimates (B. & Cances '17)

Define Fr (1) = v(T) + Au(T) — b
Estimates on F.(T) v=7(r)
I P < C -

uniformly w.r.t. 7 and the shape of 3.

Corollaries:
m Control of cond(FY.)
m Justified stopping criterion:
[T(7) — v«| < CE,

|Fr(m)| <e= |7 — 7| < Ce=
() — us| < Ce
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Nonlinear Jacobi preconditioning
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Recap on various formulations

e 0
S I~ — - [(——
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Newton's iteration Newton's iteration
u — formulation :  B(u) + Au—b = 0
v — formulation: v+ A48~ Y(v)—-b = 0
7 — formulation :  v(7) + Au(r)—b = 0

B u—formulations: catastrophic performance, but convergence theorem

B 7—formulations: excellent performance, but no convergence theorem
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Recap on various formulations
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Newton's iteration

u — formulation :
v — formulation :

7 — formulation :

o m = 32

B(u) + Au—Db

v+ ABTI(v)—Db
o(t) + Au(t) — b

6 8 10 12 14 16 18
Newton's iteration

B u—formulations: catastrophic performance, but convergence theorem

B 7—formulations: excellent performance, but no convergence theorem

Can we have both performance and convergence result?

K. Brenner (Inri

MaNu 2020
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Nonlinear Jacobi preconditioner

Nonlinear Jacobi method:
B Separate diagonal and off-diagonal terms
B(u) + diag(A)u+ (A — diag(A))u=b

f(u) Bu

m Use fixed-point iterations

ugi1 =g(b—Buy), g=f""
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Nonlinear Jacobi preconditioner

Nonlinear Jacobi method:
B Separate diagonal and off-diagonal terms
B(u) + diag(A)u+ (A — diag(A))u=b

f(u) Bu

m Use fixed-point iterations
ups1 =g(b—Bug), g=f""

Our idea: Use Jacobi method as preconditioner not as a solver

B Left preconditioned method: apply Newton to

u—g(b—Bu) =0
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Nonlinear Jacobi preconditioner

Nonlinear Jacobi method:
B Separate diagonal and off-diagonal terms
B(u) + diag(A)u+ (A — diag(A))u=b

f(u) Bu

m Use fixed-point iterations
ups1 =g(b—Bug), g=f""

Our idea: Use Jacobi method as preconditioner not as a solver

B Left preconditioned method: apply Newton to

u—g(b—Bu) =0

B Right preconditioned method: apply Newton to
£+ Bg(§) —b=0
with € = f(u)

Preconditioned methods satisfy MNT: note that B < 0.
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Efficiency of the preconditioned methods

Left-preconditioned: Right-preconditioned:
u—gb—Au) =0 E+Ag(€)—b=0
0
—a—am =4
-2 e—o—o m =
—— m = 16
44 oo m =32
—~
2
S 8
)
o) -104
=
,12,
,14,
-16 : . . ;
2 3 4 5 6 7 8

Newton's iteration

m Left and right preconditioned methods beat 7— formulation!
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CPU time efficiency

Preconditioned methods have to evaluate g = f~1:
B At each Newton'’s iteration one solves N uncoupled equations

How expensive is that?

0
\\\ — ——a N =200

. — ——s N'= 200
-2 ~ -~ T s N =400 -2 ——s N =400
\ \ \ |\—a— N =800 [—— N = 800
-4 \ [“——* N = 1200 -4 [——* N = 1200
= N N = N
£ 6 3 £ 6
I | A 3 A
S 8 | | \ S 8 \
80 1] | \ 80 o \
S L \ \ 2 \
-12 | i -12
141 Fod \ ! 14 |
) [ A | ) |
-16 T T T T T T T T + -16 T T T T T T T T +
0 05 1 L5 2 25 3 35 4 45 0 05 1 L5 2 25 3 35 4 45
CPU time [s] CPU time [s]

Relative error versus CPU time for different grid sizes:
T—formulation = dashed lines
preconditioned method = solid lines

m Efficient for all except very small problems (N 2 400) because less linear solves
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Conclusion

Nonlinear Jacobi preconditioning
B accelerates convergence of Newton's method,

B while preserving monotone convergence

0
s T — — s m=4 s m=4
2 AN \ “‘\ 2 boom=8 2 bo-om=8
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Conclusion

Nonlinear Jacobi preconditioning

B accelerates convergence of Newton's method,

B while preserving monotone convergence
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Newton's iteration Newton's iteration Newton's iteration
u — formulation : B(u) + Au—b = 0
v — formulation : v+ABTH(v)—b = 0
7 — formulation : o(r)+ Au(r)—-b = 0
Left-preconditioned : u—g(b— Au) = 0
Right-preconditioned : & + Ag(€) — b = 0
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Extensions and perspectives

Inexact preconditioning (B. '20 + ¢)

Non diagonal nonlinearities and non monotone discretizations (with R. Masson):
two-phase flow, heterogeneous media, etc, ...

m Works well with parametrization

m Ongoing work on Jacobi
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Newton’s method for scalar concave problem

Newton's method for

B f concave and increasing

f(u)

Go back
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Heterogeneous toy problem

Heterogeneous model PDE
otB(u,x) — Au =10

Piece-wise constant 3(-, x)

L ﬁ(p,z)‘ﬂl = :Bi(p)7 1=1,2

Rock 1 S
Rock 2

p
Multiple variable switching
Rock 1 S
Rock 2
S2
81 p
J/ p

via simultaneous parametrization of 31(u) and B2(u)
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