A numerical scheme for a kinetic model for mixtures in the diffusive limit using the moment method

Bérénice GREC ${ }^{1}$
in collaboration with A. Bondesan, L. Boudin
${ }^{1}$ MAP5 - Université Paris Descartes, France

Journée MaNu, Oct. 15th, 2020

14
Université de Paris

Outline of the talk

(1) Introduction

- Context of the study
- Kinetic setting
- Moment method
- Towards an Asymptotic-Preserving scheme?
(2) Numerical scheme
- Description of the scheme
- Existence of a solution
(3) Numerical results
- Diffusive behavior
- AP behavior
(4) Properties of the scheme
- Nonnegativity of the concentrations
- A posteriori validation of the assumptions
(5) Conclusion and prospects

Context of the study

- Non-reactive mixture of p monoatomic gases
- Isothermal setting $T>0$ uniform and constant
- 2 different scales for the description of the mixture
- mesoscopic scale (kinetic model): species i described by its distribution function $f_{i}(t, x, v)$
- macroscopic scale: species i described by the physical observables (concentration $c_{i}(t, x)$, velocity $u_{i}(t, x)$)
- Diffusive scaling: diffusion model at the limit

$$
\text { Boltzmann equations } \rightsquigarrow \text { Maxwell-Stefan equations }
$$

- Study of the link between the two models: formal and theoretical convergence
- Numerical scheme which describes both scales?

Kinetic setting

- Elastic collision rules, for $\sigma \in \mathbb{S}^{d-1}$

$$
\left\{\begin{array}{l}
v^{\prime}=\left(m_{i} v+m_{k} v_{*}+m_{k}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{k}\right) \\
v_{*}^{\prime}=\left(m_{i} v+m_{k} v_{*}-m_{i}\left|v-v_{*}\right| \sigma\right) /\left(m_{i}+m_{k}\right)
\end{array}\right.
$$

- Boltzmann collision operator, for $v \in \mathbb{R}^{d}$

$$
Q_{i k}\left(f_{i}, f_{k}\right)(v)=\int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} \mathcal{B}_{i k}\left(v, v_{*}, \sigma\right)\left[f_{i}\left(v^{\prime}\right) f_{k}\left(v_{*}^{\prime}\right)-f_{i}(v) f_{k}\left(v_{*}\right)\right] \mathrm{d} \sigma \mathrm{~d} v_{*}
$$

- Cross sections $\mathcal{B}_{i k}=\mathcal{B}_{k i}>0$ (Maxwell molecules)
- Boltzmann equations for mixtures

$$
\partial_{t} f_{i}+v \cdot \nabla_{x} f_{i}=\sum_{k=1}^{p} Q_{i k}\left(f_{i}, f_{k}\right), \quad \text { on } \mathbb{R}_{+} \times \Omega \times \mathbb{R}^{d}, \quad 1 \leq i \leq p
$$

Properties of the collision operator \& Diffusive scaling

[Desvillettes, Monaco, Salvarani, '05]

- Equilibrium: Maxwellian with same bulk velocity and temperature

$$
M_{i}(t, x, v)=c_{i}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}|v-u(t, x)|^{2}}{2 k_{B} T}\right)
$$

- Conservation properties of the collision operator

$$
\int_{\mathbb{R}^{d}} Q_{i k}\left(f_{i}, f_{k}\right)(v) m_{i} \mathrm{~d} v=0 \text { and } \int_{\mathbb{R}^{d}} Q_{i i}\left(f_{i}, f_{i}\right)(v) m_{i} v \mathrm{~d} v=0, \quad 1 \leq i, k \leq p .
$$

Properties of the collision operator \& Diffusive scaling

[Desvillettes, Monaco, Salvarani, '05]

- Equilibrium: Maxwellian with same bulk velocity and temperature

$$
M_{i}(t, x, v)=c_{i}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}|v-u(t, x)|^{2}}{2 k_{B} T}\right)
$$

- Conservation properties of the collision operator

$$
\int_{\mathbb{R}^{d}} Q_{i k}\left(f_{i}, f_{k}\right)(v) m_{i} \mathrm{~d} v=0 \text { and } \int_{\mathbb{R}^{d}} Q_{i i}\left(f_{i}, f_{i}\right)(v) m_{i} v \mathrm{~d} v=0, \quad 1 \leq i, k \leq p .
$$

Diffusive scaling

Small mean free path and Mach number: $\mathrm{Kn} \sim \mathrm{Ma} \sim \varepsilon$

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k=1}^{p} Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right), \quad 1 \leq i \leq p
$$

Moment method

Moments of the distribution functions

- Concentration of species i

$$
c_{i}^{\varepsilon}(t, x)=\int_{\mathbb{R}^{d}} f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

- Flux of species i

$$
F_{i}^{\varepsilon}(t, x)=c_{i}^{\varepsilon}(t, x) u_{i}^{\varepsilon}(t, x)=\frac{1}{\varepsilon} \int_{\mathbb{R}^{d}} v f_{i}^{\varepsilon}(t, x, v) \mathrm{d} v
$$

Ansatz

The distribution function of each species i is at a local Maxwellian state with a small velocity of order ε for any $(t, x) \in \mathbb{R}_{+} \times \Omega$

$$
f_{i}^{\varepsilon}(t, x, v)=c_{i}^{\varepsilon}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{d / 2} \exp \left(-\frac{m_{i}\left|v-\varepsilon u_{i}^{\varepsilon}(t, x)\right|^{2}}{2 k_{B} T}\right)
$$

Macroscopic diffusion equations

$$
\varepsilon \partial_{t} f_{i}^{\varepsilon}+v \cdot \nabla_{x} f_{i}^{\varepsilon}=\frac{1}{\varepsilon} \sum_{k} Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right), \quad \forall i
$$

- Mass conservation: moment of order 0

$$
\varepsilon \frac{\partial}{\partial t}\left(\int_{\mathbb{R}^{3}} f_{i}^{\varepsilon}(v) \mathrm{d} v\right)+\nabla_{x} \cdot\left(\int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v\right)=0
$$

where the collision term vanishes (conservation property).

$$
\partial_{t} c_{i}^{\varepsilon}+\nabla_{x} \cdot F_{i}^{\varepsilon}=0
$$

- Momentum equation: moment of order 1

$$
\varepsilon \frac{\partial}{\partial t} \int_{\mathbb{R}^{3}} v f_{i}^{\varepsilon}(v) \mathrm{d} v+\int_{\mathbb{R}^{3}} v\left(v \cdot \nabla_{x} f_{i}^{\varepsilon}(v)\right) \mathrm{d} v=\frac{1}{\varepsilon} \sum_{k \neq i} \int_{\mathbb{R}^{3}} v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v
$$

where the mono-species collision term vanishes (conservation property).

Maxwell-Stefan equations

Computing all terms, introducing $\mu_{i k}$ the reduced mass

$$
\varepsilon^{2} m_{i}\left(\partial_{t}\left(F_{i}^{\varepsilon}\right)+\nabla_{x} \cdot\left(F_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)\right)+k_{B} T \nabla_{x} c_{i}^{\varepsilon}=\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} F_{k}^{\varepsilon}-c_{k}^{\varepsilon} F_{i}^{\varepsilon}\right)
$$

- Matrix form of the Maxwell-Stefan equations (limit $\varepsilon \rightarrow 0$)

$$
k_{B} T \nabla_{x} \mathcal{C}=-A(\mathcal{C}) \mathcal{F},
$$

where $\mathcal{C}=\left(c_{i}\right)_{1 \leq i \leq p}, \mathcal{F}=\left(F_{i}\right)_{1 \leq i \leq p}$ and

$$
A_{i k}= \begin{cases}-\mu_{i k} B_{i k} c_{i}, & \text { if } i \neq k, \\ \sum_{\ell \neq i} \mu_{i \ell} B_{i \ell} c_{\ell}, & \text { if } i=k .\end{cases}
$$

- Need of a closure relation in the limit $\varepsilon \rightarrow 0$, e.g. equimolar diffusion: $\sum_{i} c_{i}$ constant (or $\sum_{i} F_{i}=0$)

Towards an Asymptotic-Preserving (AP) scheme?

- Numerical scheme capturing the behavior of both
- solutions to the Boltzmann equations in a rarefied regime
- solutions of the Maxwell-Stefan equations in the fluid regime, with fixed discretization parameters (independent of ε): AP behavior [Filbet, Jin, '10], [Jin, '12], [Jin, Shi, '10], [Jin, Li, '13]

Difficulties

- The collision (and the transport) term in the Boltzmann equation become stiffer when $\varepsilon \rightarrow 0$
- The Maxwell-Stefan equations are not invertible (closure relation)

Towards an Asymptotic-Preserving (AP) scheme?

Ideas

(1) Following [JIN, Li, '13], penalize the Boltzmann operator with a linear BGK operator (IMEX scheme)

$$
\varepsilon \frac{f_{i}^{\varepsilon, n+1}-f_{i}^{\varepsilon, n}}{\Delta t}+v \cdot \nabla_{x} f_{i}^{\varepsilon, n}=\frac{Q_{i}^{\varepsilon, n}-P_{i}^{\varepsilon, n}}{\varepsilon}+\frac{P_{i}^{\varepsilon, n+1}}{\varepsilon}
$$

BGK operator: $P_{i}^{\varepsilon}=\beta_{i}\left(M_{i}-f_{i}^{\varepsilon}\right)$, where M_{i} is the global Maxwellian with concentration c_{i} and zero bulk velocity
Issue: discretization of the transport term \Rightarrow restrictive CFL condition
(2) Moment method, in order to mimic the proof of the formal convergence

- Same ansatz:

$$
f_{i}^{\varepsilon}(t, x, v)=c_{i}^{\varepsilon}(t, x)\left(\frac{m_{i}}{2 \pi k_{B} T}\right)^{1 / 2} \exp \left\{-m_{i} \frac{\left|v-\varepsilon u_{i}^{\varepsilon}(t, x)\right|^{2}}{2 k_{B} T}\right\}
$$

- Computation of the moments

Outline of the talk

(1) Introduction

- Context of the study
- Kinetic setting
- Moment method
- Towards an Asymptotic-Preserving scheme?
(2) Numerical scheme
- Description of the scheme
- Existence of a solution
(3) Numerical results
- Diffusive behavior
- AP behavior
(4) Properties of the scheme
- Nonnegativity of the concentrations
- A posteriori validation of the assumptions
(5) Conclusion and prospects

Description of the scheme

$$
\begin{aligned}
\partial_{t} c_{i}^{\varepsilon}+\partial_{x} F_{i}^{\varepsilon} & =0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} F_{i}^{\varepsilon}+\partial_{x}\left(c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}\right)\right)+k_{B} T \partial_{x} c_{i}^{\varepsilon} & =\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} F_{k}^{\varepsilon}-c_{k}^{\varepsilon} F_{i}^{\varepsilon}\right)
\end{aligned}
$$

- 1D in space (and velocity)
- Dirichlet boundary conditions on the fluxes
- Choice: $c_{i}^{\xi}\left(u_{i}\right)^{2}=\left(F_{i}\right)^{2} / c_{i}$ for $c_{F}^{F} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$
- $c_{i, j}^{n} \approx c_{i}^{\xi}(n \Delta t, j \Delta x), F_{i, j+\frac{1}{2}}^{n} \approx F_{i}^{g}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Boundary conditions taken into account via ghost cells: F

Description of the scheme

$$
\begin{aligned}
\partial_{t} c_{i}^{\varepsilon}+\partial_{x} F_{i}^{\varepsilon} & =0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} F_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(F_{i}^{\varepsilon}\right)^{2}}{c_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} c_{i}^{\varepsilon} & =\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} F_{k}^{\varepsilon}-c_{k}^{\varepsilon} F_{i}^{\varepsilon}\right)
\end{aligned}
$$

- 1D in space (and velocity)
- Dirichlet boundary conditions on the fluxes
- Choice: $c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(F_{i}^{\varepsilon}\right)^{2} / c_{i}^{\varepsilon}$ for $c_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$

- Boundary conditions taken into account via ghost cells: $F_{i,-\frac{1}{2}}^{n+-1}=F_{i, N-\frac{1}{2}}^{n+1}=0$

Description of the scheme

$$
\begin{gathered}
\partial_{t} c_{i}^{\varepsilon}+\partial_{x} F_{i}^{\varepsilon}=0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} F_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(F_{i}^{\varepsilon}\right)^{2}}{c_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} c_{i}^{\varepsilon}=\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} F_{k}^{\varepsilon}-c_{k}^{\varepsilon} F_{i}^{\varepsilon}\right)
\end{gathered}
$$

- 1D in space (and velocity)
- Dirichlet boundary conditions on the fluxes
- Choice: $c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(F_{i}^{\varepsilon}\right)^{2} / c_{i}^{\varepsilon}$ for $c_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$
- $c_{i, j}^{n} \approx c_{i}^{\xi}(n \Delta t, j \Delta x), F_{i, j+\frac{1}{2}}^{n} \approx F_{i}^{\xi}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Boundary conditions taken into account via ghost cells: $F_{i,-\frac{1}{2}}^{n+-1}=F_{i, N-\frac{1}{2}}^{n+1}=0$

Description of the scheme

$$
\begin{aligned}
\partial_{t} c_{i}^{\varepsilon}+\partial_{x} F_{i}^{\varepsilon} & =0 \\
\varepsilon^{2} m_{i}\left(\partial_{t} F_{i}^{\varepsilon}+\partial_{x}\left(\frac{\left(F_{i}^{\varepsilon}\right)^{2}}{c_{i}^{\varepsilon}}\right)\right)+k_{B} T \partial_{x} c_{i}^{\varepsilon} & =\sum_{k \neq i} \mu_{i k} B_{i k}\left(c_{i}^{\varepsilon} F_{k}^{\varepsilon}-c_{k}^{\varepsilon} F_{i}^{\varepsilon}\right)
\end{aligned}
$$

- 1D in space (and velocity)
- Dirichlet boundary conditions on the fluxes
- Choice: $c_{i}^{\varepsilon}\left(u_{i}^{\varepsilon}\right)^{2}=\left(F_{i}^{\varepsilon}\right)^{2} / c_{i}^{\varepsilon}$ for $c_{i}^{\varepsilon} \neq 0$
- Implicit treatment of the linear and the Maxwell-Stefan terms (in red)
- $\Delta t, \Delta x>0$: time and space steps, $\lambda=\Delta t / \Delta x$
- $c_{i, j}^{n} \approx c_{i}^{\varepsilon}(n \Delta t, j \Delta x), F_{i, j+\frac{1}{2}}^{n} \approx F_{i}^{\varepsilon}\left(n \Delta t,\left(j+\frac{1}{2}\right) \Delta x\right)$
- Boundary conditions taken into account via ghost cells: $F_{i,-\frac{1}{2}}^{n+1}=F_{i, N-\frac{1}{2}}^{n+1}=0$

Discretization of the equations

$$
\begin{aligned}
& c_{i, j}^{n+1}+\lambda\left(F_{i, j+\frac{1}{2}}^{n+1}-F_{i, j-\frac{1}{2}}^{n+1}\right)=c_{i, j}^{n} \\
& \left(-\Delta t \sum_{k \neq i} \mu_{i k} B_{i k} c_{k, j+\frac{1}{2}}^{n+1}-\varepsilon^{2} m_{i}\right) F_{i, j+\frac{1}{2}}^{n+1}+\Delta t c_{i, j+\frac{1}{2}}^{n+1} \sum_{k \neq i} \mu_{i k} B_{i k} F_{k, j+\frac{1}{2}}^{n+1} \\
& \\
& =k_{B} T \lambda\left(c_{i, j+1}^{n+1}-c_{i, j}^{n+1}\right)+\varepsilon^{2} m_{i}\left(\lambda R_{i, j+\frac{1}{2}}^{n}-F_{i, j+\frac{1}{2}}^{n}\right)
\end{aligned}
$$

- Choice of c_{i} at the center of the cells: $c_{i, j+\frac{1}{2}}^{n+1}:=\min \left\{c_{i, j}^{n+1}, c_{i, j+1}^{n+1}\right\}$

Matrix form of the scheme
Vector of unknowns $\mathcal{Y}^{n}=\binom{\mathcal{C}^{n}}{\mathcal{F}^{n}} \in \mathbb{R}^{p(2 N+1)}$, where

$$
\mathcal{C}^{n}=\left(c_{1,0}^{n}, \cdots, c_{1, N}^{n}, \cdots, c_{p, 0}^{n}, \cdots, c_{p, N}^{n}\right)^{\top}, \quad \mathcal{F}^{n}=\left(F_{1, \frac{1}{2}}^{n}, \cdots, F_{p, N-\frac{1}{2}}^{n}\right)^{\top} .
$$

The system becomes

$$
\mathbb{S}^{\varepsilon}\left(\mathcal{C}^{n+1}\right) \mathcal{Y}^{n+1}=b^{n}
$$

Existence of a solution

$$
\mathbb{S}^{\varepsilon}\left(\mathcal{C}^{n+1}\right) \mathcal{Y}^{n+1}=\mathrm{b}^{n}, \text { where } \mathbb{S}^{\varepsilon}\left(\mathcal{C}^{n+1}\right)=\left[\begin{array}{cc}
\mathbb{I} & \mathbb{S}_{12} \\
\mathbb{S}_{21} & \mathbb{S}_{22}^{\varepsilon}\left(\mathcal{C}^{n+1}\right)
\end{array}\right]
$$

The matrix form of the system is solved numerically by a Newton method.

By a fixed-point argument, we can prove the existence of a solution \mathcal{Y}^{n+1} to this matrix form of the system.

- Auxiliary system: replace the concentrations \mathcal{C}^{n+1} by their positive parts $\tilde{\mathcal{C}}^{n+1}$
- $\mathbb{S}^{\varepsilon}\left(\tilde{\mathcal{C}}^{n+1}\right)$ is invertible
- Write $\tilde{\mathcal{C}}^{n+1}=f\left(\tilde{\mathcal{C}}^{n+1}\right)$, with f continuous and compact
- Bound on any ξf, for $\xi \in[0,1]$, by using a L^{1}-estimate: $\left\|\tilde{\mathcal{C}}^{n+1}\right\|_{L^{1}} \leq\left\|\tilde{\mathcal{C}}^{n}\right\|_{L^{1}}$
- Schaefer's fixed-point theorem: existence of $\tilde{\mathcal{C}}^{n+1}$, and thus of $\mathcal{F}^{n+1}=g\left(\tilde{\mathcal{C}}^{n+1}\right)$.
- By nonnegativity, a solution to the auxiliary system is also solution of the initial system.

Outline of the talk

(1) Introduction

- Context of the study
- Kinetic setting
- Moment method
- Towards an Asymptotic-Preserving scheme?
(2) Numerical scheme
- Description of the scheme
- Existence of a solution
(3) Numerical results
- Diffusive behavior
- AP behavior
(4) Properties of the scheme
- Nonnegativity of the concentrations
- A posteriori validation of the assumptions
(5) Conclusion and prospects

Parameters of the scheme and diffusion of two species

- 3 species: $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and CO_{2}
- Molar masses $M_{1}=2, M_{2}=28$ and $M_{3}=44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
- $B_{i j}$ computed from the binary diffusive coefficients: $B_{i j}=\frac{\left(m_{i}+m_{j}\right) k_{B} T}{4 \pi m_{i} m_{j} D_{i j}}$
- Rescaling of the cross sections by a factor 10^{5}
- $\Omega=[-1,1], \Delta t=\Delta x^{2}=10^{-4}$
- Diffusion of two species
- Diffusion of H_{2} and CO_{2} for $\varepsilon=10^{-2}$
- Plots of the concentrations for $t=0,10^{-2}, 10^{-1}, 1,10$

Cross-diffusion for mixtures

- 3 species test case, classical diffusion H_{2} and CO_{2}
> N_{2}, although being at equilibrium, moves (uphill diffusion)
- Diffusion barrier: classical diffusion takes over

Cross-diffusion for mixtures

- 3 species test case, classical diffusion H_{2} and CO_{2}
- N_{2}, although being at equilibrium, moves (uphill diffusion)
- Diffusion barrier: classical diffusion takes over

AP behavior

- Fixed discretization parameters for arbitrary small values of ε
- Convergence of the concentrations to the solutions of Maxwell-Stefan

- Influence of the value of ε on the diffusion process (plot at $t=10^{-2}$)

Outline of the talk

(1) Introduction

- Context of the study
- Kinetic setting
- Moment method
- Towards an Asymptotic-Preserving scheme?
(2) Numerical scheme
- Description of the scheme
- Existence of a solution
(3) Numerical results
- Diffusive behavior
- AP behavior
(4) Properties of the scheme
- Nonnegativity of the concentrations
- A posteriori validation of the assumptions
(5) Conclusion and prospects

Nonnegativity of the concentrations

$$
\begin{aligned}
& c_{i, j}^{n+1}+\lambda\left(F_{i, j+\frac{1}{2}}^{n+1}-F_{i, j-\frac{1}{2}}^{n+1}\right)=c_{i, j}^{n} \\
& \left(-\Delta t \sum_{k \neq i} \mu_{i k} B_{i k} c_{k, j+\frac{1}{2}}^{n+1}-\varepsilon^{2} m_{i}\right) F_{i, j+\frac{1}{2}}^{n+1}+\Delta t c_{i, j+\frac{1}{2}}^{n+1} \sum_{k \neq i} \mu_{i k} B_{i k} F_{k, j+\frac{1}{2}}^{n+1} \\
& \\
& =k_{B} T \lambda\left(c_{i, j+1}^{n+1}-c_{i, j}^{n+1}\right)+\varepsilon^{2} m_{i}\left(\lambda R_{i, j+\frac{1}{2}}^{n}-F_{i, j+\frac{1}{2}}^{n}\right)
\end{aligned}
$$

Vectorial form of the equations, with \mathcal{S} the source term

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \mathcal{A F}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

Nonnegativity of the concentrations II

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \mathcal{A F}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
- Nondiagonal terms of \mathcal{A}^{-1} contain $\mathcal{C}_{j+1 / 2}^{+}$
$\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0$
- Diagonal terms of \tilde{A}^{-1} are nonnegative
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \tilde{\mathcal{A} \mathcal{F}}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
- Nondiagonal terms of \mathcal{A}

$\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0$
- Diagonal terms of $\tilde{\Lambda}^{-1}$ are nonnegative
${ }^{-}$Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\begin{aligned}
& \partial_{t} \mathcal{C}=\partial_{x} \mathcal{F} \\
& \tilde{\mathcal{A} \mathcal{F}}=\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}
\end{aligned}
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by C^{-}, integration by parts
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$
$\min \left(C_{j}^{+}, C_{j+1}^{+}\right)\left(C_{j+1}^{-}-C_{j}^{-}\right)=0$
- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative

Nonnegativity of the concentrations II

$$
\partial_{t} \mathcal{C}=\partial_{x}\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right)
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by C^{-}, integration by parts
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative

Nonnegativity of the concentrations II

$$
\partial_{t} \mathcal{C}=\partial_{x}\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right)
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts [Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of \mathcal{A}

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- Thus
$\partial_{t} C, C$ $\mathcal{C}^{-}>\leq 0$ O: \mathcal{C} is nonnegative

Nonnegativity of the concentrations II

$$
\left.\left\langle\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}\right\rangle
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of \mathcal{A}
$\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0$
- Diagonal terms of \tilde{A}^{-1} are nonnegative

Nonnegativity of the concentrations II

$$
\left.\left\langle\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}\right\rangle
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts [Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0 .
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- Thus $<\partial_{t} C, C$ $>\leq 0$ 0 : C is nonnegative

Nonnegativity of the concentrations II

$$
\left.\left\langle\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}\right\rangle
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- and for ε small enough, the \mathcal{S}-term is controlled by the previous one.

Nonnegativity of the concentrations II

$$
\left.\left\langle\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}\right\rangle
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- We have $<\partial_{x} \mathcal{C}, \partial_{x} \mathcal{C}^{-}>\leq 0$,

[^0]
Nonnegativity of the concentrations II

$$
\left.\left\langle\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}\right\rangle
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- We have $<\partial_{x} \mathcal{C}, \partial_{x} \mathcal{C}^{-}>\leq 0$,
- and for ε small enough, the \mathcal{S}-term is controlled by the previous one.

Nonnegativity of the concentrations II

$$
\left.\left\langle\partial_{t} \mathcal{C}, \mathcal{C}^{-}\right\rangle=<\left(\tilde{\mathcal{A}}^{-1}\left(\partial_{x} \mathcal{C}+\varepsilon^{2} \mathcal{S}\right)\right), \partial_{x} \mathcal{C}^{-}\right\rangle
$$

- Auxiliary equations: replace \mathcal{C} by \mathcal{C}^{+}in $\mathcal{A} \rightsquigarrow \tilde{\mathcal{A}}$ (invertible)
- Use the momentum equation in the mass equation
- Multiply by \mathcal{C}^{-}, integration by parts
[Anaya, Bendahmane, Sepúlveda, '15]
- Nondiagonal terms of $\tilde{\mathcal{A}}^{-1}$ contain $\mathcal{C}_{j+1 / 2}^{+}$:

$$
\min \left(\mathcal{C}_{j}^{+}, \mathcal{C}_{j+1}^{+}\right)\left(\mathcal{C}_{j+1}^{-}-\mathcal{C}_{j}^{-}\right)=0
$$

- Diagonal terms of $\tilde{\mathcal{A}}^{-1}$ are nonnegative
- We have $<\partial_{x} \mathcal{C}, \partial_{x} \mathcal{C}^{-}>\leq 0$,
- and for ε small enough, the \mathcal{S}-term is controlled by the previous one.
- Thus $<\partial_{t} \mathcal{C}, \mathcal{C}^{-}>\leq 0: \mathcal{C}$ is nonnegative.

A posteriori validation of the assumptions

Smallness of the source terms $\varepsilon^{2} \mathcal{S}$

- Numerically, uniform boundedness w. r. t. ε

Closure relation for Maxwell-Stefan

- Numerically, $\sum_{i=1}^{p} c_{i}=1+O\left(\varepsilon^{2}\right)$

Outline of the talk

(1) Introduction

- Context of the study
- Kinetic setting
- Moment method
- Towards an Asymptotic-Preserving scheme?
(2) Numerical scheme
- Description of the scheme
- Existence of a solution
(3) Numerical results
- Diffusive behavior
- AP behavior
(4) Properties of the scheme
- Nonnegativity of the concentrations
- A posteriori validation of the assumptions
(5) Conclusion and prospects

Conclusion and prospects

Le

Conclusions

- Suitable numerical scheme able to capture the Maxwell-Stefan diffusion asymptotic of Boltzmann equation for mixtures, via the moment method
- A priori nonnegativity of the concentrations, existence of a solution to the scheme
- A posteriori validation of the assumptions (closure relation, smallness assumption)

Prospects

- Higher space and velocity dimensions
- L^{2} a priori estimates
- AP-property
- Uniqueness of the scheme

Thank you for your attention!

Computations of the different terms

- Divergence term: use of the Ansatz, translation in $v+$ parity argument

$$
\begin{aligned}
\nabla \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right) & \propto \nabla \cdot\left(c_{i}^{\varepsilon} \int\left(v \otimes v+\varepsilon^{2} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right) e^{-m_{i}|v|^{2} / 2 k T} \mathrm{~d} v\right) \\
& =\frac{k T}{m_{i}} \nabla c_{i}^{\varepsilon}+\varepsilon^{2} \nabla \cdot\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)
\end{aligned}
$$

- Collision term: explicit computations or algebraic arguments [BoUdin, G.,
- For Maxwell molecules: weak form, collision rules, symmetry and parity arguments:

In terms of macroscopic quantities

Computations of the different terms

- Divergence term: use of the Ansatz, translation in $v+$ parity argument

$$
\begin{aligned}
\nabla \cdot\left(\int v \otimes v f_{i}^{\varepsilon}(v) \mathrm{d} v\right) & \propto \nabla \cdot\left(c_{i}^{\varepsilon} \int\left(v \otimes v+\varepsilon^{2} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right) e^{-m_{i}|v|^{2} / 2 k T} \mathrm{~d} v\right) \\
& =\frac{k T}{m_{i}} \nabla c_{i}^{\varepsilon}+\varepsilon^{2} \nabla \cdot\left(c_{i}^{\varepsilon} u_{i}^{\varepsilon} \otimes u_{i}^{\varepsilon}\right)
\end{aligned}
$$

- Collision term: explicit computations or algebraic arguments [Boudin, G., Salvarani, '15], [Hutridurga, Salvarani, '17], [Boudin, G., Pavan, '17]
- For Maxwell molecules: weak form, collision rules, symmetry and parity arguments:
$\int v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v=\frac{m_{k}}{m_{i}+m_{k}} \int b_{i k}(\cos \theta) f_{i}^{\varepsilon} f_{k *}^{\varepsilon}\left(v_{*}-v+\left|v-v_{*}\right| \sigma\right) \mathrm{d} \sigma \mathrm{d} v_{*} \mathrm{~d} v$
In terms of macroscopic quantities

$$
\frac{1}{\varepsilon} \sum_{k \neq i} \int v Q_{i k}\left(f_{i}^{\varepsilon}, f_{k}^{\varepsilon}\right)(v) \mathrm{d} v=\sum_{k \neq i} \underbrace{\frac{2 \pi m_{k}\left\|b_{i j}\right\|_{L^{1}}}{m_{i}+m_{k}}}_{D_{i j}^{-1}}\left(c_{i}^{\varepsilon} c_{k}^{\varepsilon} u_{k}^{\varepsilon}-c_{k}^{\varepsilon} c_{i}^{\varepsilon} u_{i}^{\varepsilon}\right)
$$

[^0]: - and for ε small enough, the \mathcal{S}-term is controlled by the previous one.

